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A fully developed turbulent channel flow is subjected to a mean strain that approxi-
mates that in a spatially developing adverse-pressure-gradient (APG) boundary layer.
This is done by applying uniform irrotational temporal deformations to the flow
domain of a conventional direct numerical simulation channel code. The velocity
difference between the inner and outer layer is also controlled by accelerating the
walls in the streamwise plane, in order to duplicate the defining features of both the
inner and outer regions of an APG boundary layer. Eventually, the flow reverses
at the wall. We address basic physics and modelling issues, and create a database
that makes detailed testing of turbulence models easy. As in the corresponding
spatial layers, distinct inner- and outer-layer dynamics are observed: a decrease in
turbulence intensity near the wall is accompanied by increased energy in the outer
layer. The ‘extra strain’ effect associated with the diverging outer-layer streamlines is
documented, particularly in the Reynolds-stress budgets.

1. Introduction
This paper is a continuation of an earlier numerical study of three-dimensional wall-

bounded shear flows (Coleman, Kim & Spalart 2000, hereinafter referred to as CKS).
In that work we examined the response of wall-bounded turbulence to the strain fields
induced by streamwise and spanwise pressure gradients, as they introduce mean three-
dimensionality into an originally two-dimensional boundary layer. We found, among
other things, that the turbulence is much more sensitive to the mean streamwise
deceleration (∂U/∂x < 0) and/or wall-normal stretching (∂V/∂y > 0) than it is to
mean skewing (∂W/∂x = ∂U/∂z). (The x-, y- and z-coordinates, respectively, indicate
the streamwise, wall-normal, and spanwise directions, aligned with the upstream two-
dimensional flow.) This led us to consider the case presented here, where the strain
field imitates a simpler two-dimensional non-equilibrium adverse-pressure gradient
(APG) boundary layer. (We use ‘non-equilibrium’ as a synonym for ‘perturbed’ or
‘non-stationary’, to indicate a flow subjected to a relatively rapid change of the mean
field and the ensuing finite-time-lag response of the turbulence.) Our aim is to better
understand the physics of a prototypical perturbed wall-bounded shear layer, and
ultimately improve turbulence models when applied to APG flows of engineering
interest. As in the previous study, we employ direct numerical simulation (DNS) of
a strained-channel flow (but at higher Reynolds number), with a focus upon the
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behaviour of the mean statistics (rather than the instantaneous coherent structures),
and attempt to extract implications for modelling non-trivial flows.

One of the motivations for this work is the need to understand and model the
distinct ways in which near-wall and outer-layer turbulence respond to an APG. A
classical result of subjecting a boundary layer, laminar or turbulent, to an APG is
reduction of the near-wall shear. This inner-layer effect leads to reduced production
of turbulence kinetic energy (Nagano, Tsuji & Houra 1997). The outer-layer dynamics
are less certain. Some have proposed that a sudden change in streamwise pressure
gradient dP/dx does not affect the outer layer until the surface reduction in mean
shear ∂U/∂y propagates sufficiently far from the wall (Smits & Wood 1985). Until
this happens, it is assumed that turbulence convecting along an outer-layer streamline
is unaltered by streamwise changes of dP/dx. In support of this view is the fact
that, to within the linear (i.e. weak-turbulence) inviscid idealization, ∂U/∂y remains
constant along a mean streamline – which suggests that the outer-layer turbulence
is affected by APG perturbations only indirectly, through viscous (and turbulent)
diffusion of changes they induce at the surface. However, the APG might have
another, more direct, outer-layer effect through the strain rate components associated
with the divergence of the mean streamlines. Although the magnitude of these ‘extra’
strains – the mean streamwise compression ∂U/∂x < 0 and wall-normal stretching
∂V/∂y > 0 – is typically much weaker than the mean shear is in the more active region
of the boundary layer, they become non-negligible at face value in the outer layer,
where ∂U/∂y → 0. Since even a slight distortion or reorientation of eddies away from
the shape they obtain after coming into equilibrium with a slowly varying ∂U/∂y can
have profound dynamic consequences (Townsend 1961; Bradshaw 1973, 1987, 1988;
Hanjalić & Launder 1980; Smits & Wood 1985), it is conceivable that either or both
of the APG strains ∂U/∂x < 0 and ∂V/∂y > 0 might produce significant outer-layer
alterations, unrelated to those that diffuse from the near-wall region. Many of our
results will be shown after a total strain of 0.365 which means that a material line
that was initially at 45◦ to the wall, leaning downstream as in many models of the
outer-layer coherent structures, ends up at 64◦ (i.e. arctan[exp(0.365)/ exp(−0.365)])
to the wall.

We examine the outer-layer effects of an APG by studying a time-developing
idealization of a spatially developing APG boundary layer, using DNS. The time-
developing flow allows a better statistical sample, which is essential for the budgets,
and a higher Reynolds number than a DNS of a spatial APG flow such as that
of Spalart & Watmuff (1993). As an idealization, the strained channel cannot be
expected to provide the final word on this subject; it should, however, given the basic
features shared with the spatial boundary layer, make a meaningful contribution to
the topic. Another motivation for what follows is to publicize the strained-channel
flow as a candidate for future turbulence model testing and development.

In the next section, we introduce and motivate the strained-channel approach, here
for the case of a two-dimensional mean flow. Histories of Reynolds-stress statistics
and budgets from the DNS, and a discussion of their implications, are then presented.
The final section contains a summary of the work and general conclusions regarding
the physics and modelling of non-equilibrium APG boundary layers.

2. Approach
A spatially developing low-Mach-number APG boundary layer is emulated by

simultaneously applying streamwise in-plane wall motion and straining the entire



DNS of decelerated wall-bounded turbulent shear flow 3

Fluid
element

U                                    U

x

y

Streamlines xU

yChannel walls

t = 0

t > 0

(b)(a)

Figure 1. Side view of two-dimensional APG boundary layer. (a) Spatially developing flow.
(b) Initial and deformed domain of time-developing strained-channel idealization.

domain (including the walls) of an initially fully developed incompressible channel
flow (figure 1b). The in-plane wall motion duplicates the bulk deceleration of the APG
(leading to a reduction in the wall shear stress), by causing the difference between
the mean centreline velocity uc and wall velocity uw to decrease at an appropriate
rate (see below). It is equivalent to controlling the Poiseuille pressure gradient. The
imposed strain, on the other hand, supplies the irrotational deformation (streamwise
compression with wall-normal divergence) associated with the APG. Solutions are
obtained using DNS, which resolves all relevant scales of motion so that no turbulence
or subgrid-scale model is needed.

The approach to the strain is similar to that of Rogallo (1981), except that
instead of distorting spatially homogeneous turbulence u′(x, t), here the flow u(x, t)
is between two no-slip surfaces and will contain both fluctuations u′(x, t) and an
inhomogeneous mean u(y, t). (Rogers (2002) has also performed a homogeneous-
strain/inhomogeneous-flow DNS, but for a free shear flow, free of no-slip boundaries.)
This strategy is based on the observation that the essential perturbation felt by the
outer region of an APG boundary layer is not the pressure gradient as such, which has
no effect on vorticity, but the ∂U/∂x = −∂V/∂y < 0 mean strain that it causes. We
use a three-dimensional flow domain that is spatially periodic in the streamwise x and
spanwise z directions and has two no-slip ‘elastic’ plane walls, and thus approximate
the spatially developing problem with a temporally evolving one. Away from the walls,
the channel turbulence is subjected to mean-flow variations in time that correspond
to convective changes in a boundary layer (figure 1). The behaviour of the very-near-
wall turbulence will also be relevant to the boundary layer, provided the magnitude
of the wall shear remains much larger than the applied rate of strain (which, as
is shown below, will be true here until just before the skin friction changes sign).
The essential characteristics of spatially developing pressure-driven shear layers are
thereby captured in a wall-bounded flow that maintains its streamwise and spanwise
homogeneity, with great benefits to numerical and statistical efficiency. When averages
are discussed we use U and u, respectively, to denote the imposed deformations and
the temporally evolving profiles in the channel (averaging the latter over the directions
parallel to the walls). An indication of the validity of this approach is verification
that the outer-layer mean velocity profiles evolve appropriately (see figure 4).

The imposed deformation field Ui varies linearly in space according to Ui(x, t) =
Aij (t)xj , where each component of the spatially uniform velocity gradient Aij is
constant in time, ∂Aij/∂t = 0. Consequently, the virtual mean pressure gradient ∂Q/∂xi
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associated with the applied strain Aij is also constant in time, but linear in space (see
equation (2.8) of CKS). In contrast, since during the straining the velocity field u(x, t)
remains homogeneous in x and z (and the flow is incompressible), so does the actual
pressure p(x, t) in the channel, i.e. the pressure fluctuations† remain periodic in x

and z, and the mean gradient dp/dx =0. (The externally imposed uniform pressure-
gradient/body-force, which drove the Poiseuille flow before the strain was applied,
has been set to zero, with its role now filled by the in-plane wall motion.)

We choose a two-dimensional strain field Aij ≡ ∂Ui/∂xj given by the divergence-free
irrotational deformation,

Aij ≡ ∂Ui

∂xj

=


∂U/∂x 0 0

0 ∂V/∂y 0
0 0 0


 , (2.1)

where

A11 + A22 = 0. (2.2)

For this study, the non-zero Aij are the streamwise compression A11 ≡ ∂U/∂x < 0
and wall-normal divergence A22 ≡ ∂V/∂y = −A11 > 0. (Other deformations involving
spanwise skewing and lateral divergence are discussed in CKS.) The channel wall
motion uw(t) is specified such that, when viewed in the reference frame attached
to the moving walls, the centreline velocity satisfies uc(t) = uc(0) exp(A11t). This
gives duc/dt = A11uc with d/dt as the material derivative. (Compare with the edge
of a steady spatially developing boundary layer, where the material derivative is
DU/Dt = A11U .) This approach has the advantage of producing the desired mean
flow perturbation in an uncomplicated parallel-flow geometry. Moreover, because
the Reynolds-averaged statistics satisfy a one-dimensional unsteady problem, model
testing can be done quickly and efficiently. Further details are given in CKS.

A relatively weak APG is specified, with A22 = −A11 equal to 31% of uτ (0)/δ(0), the
ratio of the initial friction velocity to the initial channel half-width. This corresponds
to 1.5% of uc(0)/δ(0) and is less than 10% of the initial local mean shear ∂u/∂y in
the outer layer (except very near the channel centreline, where ∂u/∂y ≡ 0); it is 5% at
yw = 0.5δ (see figure 4b). This choice was motivated by a desire to correspond roughly
to the APG experiments of Nagano, Tagawa & Tsuji (1992) and Spalart & Watmuff
(1993). However, quantitative diffences between the present temporal and previous
spatial flows are unavoidable, if for no other reason than we are using a finite-height
channel geometry to approximate the semi-infinite-domain boundary layer. Another
reason the previous and current studies are not identical is the differing variation
of the effective mean pressure fields: the pressure coefficient Cp for the Nagano
et al. experiment increases linearly with downstream distance x, while for the Spalart
& Watmuff flow (which involved a joint experiment and computation), the turbulence
is subjected to a pressure gradient varying smoothly from favourable to zero to
adverse. Here, the effective Cp variation is defined as (Cp)eff ≡ 1 − [uc(t)/uc(0)]2,
such that (Cp)eff = 1 − exp(−2A22t). The effective distance xeff (t) travelled in time
t when convecting at the mean centreline velocity (i.e. dxeff/dt ≡ uc(0) exp(A11t))
is xeff (t) = uc(0)[1 − exp(−A22t)]/A22. As a result, the effective pressure field varies

† The pressure fluctuations p′ satisfy p′
,ii = −uj,iu

′
i,j −u′

j,iui,j +u′
j,iu

′
i,j −u′

j,iu
′
i,j −2u′

j,iAi,j (CKS).
Note that the forcing terms in this Poisson equation only involve fields that are either periodic (the
velocity) or uniform (the applied strain Aij ) in x and z, which implies that p′ does not share the
quadratic spatial variation of the virtual pressure field associated with Aij .
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exponentially in A22t (quadratically in xeff), with the maximum d(Cp)eff/dxeff occurring
when the strain is first applied (figure 3). The streamwise Cp variation is thus
qualitatively different for the Nagano et al., Spalart & Watmuff, and present cases.

For the DNS, the effective Clauser parameter βeff ≡ −δ∗ucA11/u
2
τ is initially 0.78; δ∗

is the displacement thickness in a half-channel. The Reynolds number, Reτ = uτ δ/ν,
of the flow to which the strain is applied is 390, which is large enough (roughly four
times that needed to sustain turbulence) to produce a fairly well-defined inertial layer
(CKS had Reτ = 180). The initial Reynolds number based on mean centreline velocity
is Rec = ucδ/ν = 7910, while the bulk Reynolds number Rem ≡ 2δUm/ν (where Um is
the bulk mixed-mean velocity) is 13 750. Mean results have been gathered by averaging
over the homogeneous/periodic streamwise x and spanwise z directions (figure 1b),
doubling the sample by ‘folding’ about the centreline (invoking symmetry), and this
for 21 statistically independent realizations. These were obtained by imposing the
strain on instantaneous fields from 21 distinct times of a preliminary unstrained
plane-channel computation.

At this Reynolds number, 256 streamwise, 193 wall-normal and 192 spanwise
equivalent grid points are required for the Fourier/Chebyshev spectral discretization
to resolve the full range of turbulent scales. The initial streamwise Λx and spanwise Λz

domain sizes are, respectively, 2π and π times the channel halfwidth δ. The sufficiency
of these numerical parameters has been verified by examining energy spectra and
two-point correlations, both before and after the straining (see figure 2). The extra
challenge, compared to the conventional unstrained plane channel, of capturing at all
times the full range of turbulent scales in a domain whose streamwise extent decreases
in time under the APG strain (cf. figure 1b), is revealed in the streamwise velocity
correlations at A22t = 0.365 (open-symbol curves) shown in figures 2(b) and 2(d).
Although non-zero, values at the maximum-separation rx = Λ(t)/2 are small enough
(approximately 0.1) to imply that all but the very largest streamwise structures have
not been significantly affected by the finite streamwise domain. The spanwise integral
scales tend to increase somewhat during the straining, but not to the point that the
spanwise domain size is inadequate (figures 2f and 2h).

The simulation was performed on Cray T90s at the SDSC/NPACI and
DOD/NAVO Centers. A total of 2100 single-processor CPU hours were required
to obtain the 21-field average results from A22t = 0 to 0.365, shown below.

3. Results
The overall evolution of the flow is illustrated in figures 3 and 4, and catalogued

in table 1. In response to the applied strain, coupled with the effective mean pressure
variation given by the broken curve in figure 3, the flow is affected at the wall
and away from it. The near-wall influence is indicated by the reduction in the skin
friction, where the open symbols trace the history of various DNS realizations and
the thick-solid curve is an interpolant, given by

τw(s)/τw(0) = exp(c0s) + c1s
3 + c2 exp(c3s) sin(c4s), (3.1)

with (c0, c1, c2, c3, c4) = (−3.5433, −0.3127, 2.9267, −29.5295, −3.3553) and s = A22t .
The wall-stress reversal occurs at A22t ≈ 0.675. We expect this value will be a
useful benchmark for testing turbulence models that are to be applied to separating
boundary layers. Although the τw = 0 time is not related to a physical separation,
in the sense of a flow departing from the surface at a point in space, the ability of
a model to capture the cumulative effect of the APG strain by accurately predicting
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Figure 2(a–d). See facing page for caption.

this time will provide a measure of its ability to faithfully represent attached and
separated APG flows of engineering interest. Comparing these tests to those made
for the spatial counterpart (e.g. Menter 1992) should give insight into the importance
of the features that the flows share (zero skin friction, mean flow reversal) and those
only appearing in the spatial case (streamline curvature, mean outflow from the wall
dependent on the turbulence instead of imposed, detached/curved shear layers).

The effect of the strain upon the turbulence away from the wall is also revealed in
figure 3, by the solid symbols. These display the history of the maximum turbulence
kinetic energy kmax (i.e. the peak value from the k profiles shown in figure 5b) from one
of the DNS realizations (the two curves correspond to the maxima above and below
the channel centreline). There is a brief period just after the strain is applied when the
near-wall turbulence becomes more energetic, as a result of the non-zero production
term −A11(u′u′ − v′v′) (see (3.3) and figure 7b). Afterwards, the reduced production
associated with the diminished shear causes a steady decrease. The plateau in kmax
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Figure 2. One-dimensional Fourier spectra and two-point correlations: , u component;
, v; , w. Curves with and without symbols respectively denote A22t = 0.365 results

and unstrained initial conditions at A22t = 0. Streamwise x-direction: (a, b) near centreline,
yw/δ(t) = 0.805; (c, d) near walls, yw/δ(t) = 0.013. Spanwise z-direction: (e, f ) near centreline,
yw/δ(t) = 0.805; (g, h) near walls, yw/δ(t) = 0.013. The distance to the nearest wall yw = |y−δ|.

at later times is a symptom of the outer-layer production introduced by the applied
strain. This will become clear below, when we discuss the profiles and especially the
budgets of the Reynolds stresses.

The evolution of the mean velocity is shown in figure 4 and validates the strained-
channel analogy. The curves represent DNS data from the 21-field ensemble for times
0 � A22t � 0.365; the open symbols in figure 4(a–c) are from a single realization at
A22t = 0.77, just after the skin friction has changed sign. (The cost of extending the
full average up to A22t = 0.77, by advancing each of the 21 DNS realizations from
A22t = 0.365 to 0.77, would have been of the order of another 2000 T90 CPU hours,
which we were unable to justify.) Many of the well-known qualitative features of
APG boundary layers are apparent. The evolution of the mean velocity demonstrates
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Figure 3. History of effective mean pressure, mean skin friction, and peak turbulence
kinetic energy: , effective pressure coefficient, (Cp)eff = 1 − exp(2A11t); �, τw from
21 independent DNS realizations; , equation (3.1) interpolant; � and �, kmax from (both
sides of) a single DNS realization. Vertical lines mark times for which mean profiles are shown
in other figures.

A22t δ(t)/δ(0) τw/τw(0) uτ /uc H βeff

0 1 1 0.0495 1.45 0.78
0.19 1.21 0.49 0.042 1.57 2.2
0.365 1.44 0.25 0.036 1.70 5.7
0.77 2.15 −0.05 0.024 2.5 –

Table 1. Global DNS results.

both the reduction of bulk mass flow and wall shear stress (eventually leading to a
small mean-flow reversal near the wall) and the increase in the layer thickness found
in spatial cases.

The relatively small amplitude of the applied strain creating these changes is evident
in figure 4(b), which depicts the ratio of the strain rate to the mean shear, A22/|∂u/∂y|.
This perturbation is such that the effective Clauser parameter βeff increases from
−δ∗ucA11/u

2
τ = 0.78 at A22t = 0, to 5.7 at A22t = 0.365, and then infinity. We are,

thus, far from a constant-β , so-called ‘equilibrium’, regime. While the strain becomes
increasingly powerful in relative terms as time passes, A22 is at most of the order
of 10% of the local shear rate ∂u/∂y (except very near yw = δ, where ∂u/∂y ≡ 0),
even for the A22t = 0.77 conditions, when near the wall ∂u/∂y ≈ 0. The response of
the mean flow to the suddenly applied strain is an increase in the shape factor from
H = 1.45 at A22t = 0 to H = 1.70 at A22t = 0.365 and H ≈ 2.5 at A22t = 0.77.
The latter value (just after τw has become negative) is close to the H ≈ 2.7 found at
separation by Alving & Fernholz (1995) in their axisymmetric-body separation-bubble
experiment.
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Figure 4. Mean velocity: , A22t = 0; , A22t = 0.02; , A22t = 0.10; ,
A22t = 0.19; , A22t = 0.28; , A22t = 0.365; �, A22t = 0.77 (single realization). To
aid clarity, A22t = 0.02, 0.10 and 0.28 results are not shown in (b) and (c). Thin-solid curves in
(c) indicate approximation of conserved ∂u/∂y. Horizontal line in (e) is 1/κ = 1/0.41. Subplot
in (d) shows competing effects of expanding domain and decreasing friction velocity upon
wall-normal coordinate in wall units. All velocities measured with respect to reference frame
attached to streamwise-moving walls. The distance to the nearest wall yw = |y − δ(t)|.

The mean velocities are shown in an outer scaling in figure 4(c), and com-
pared to the variation that would result if ∂u/∂y were to remain constant at a
given yw/δ(t) (the thin-solid curves), such that [uc(t) − u(η, t)] /uc(t) = exp(2A22t)
[1 − u(η, 0)/uc(0)]η=η(0), where η(t) = yw/δ(t) and yw = (δ(t) − |y|) = δ(0) exp(A22t) −
|y|. In the present time-developing parallel flow, η is equivalent to the streamfunction
in spatially developing flows, and ∂u/∂y to vorticity. Vorticity is conserved at fixed η

as long as the total shear stress remains linear in y, as it is in the unstrained channel.
In general, vorticity is conserved during distortions rapid compared with the time
scale of the turbulence, which is a different argument. The agreement of the actual
and constant-∂u/∂y curves is best at the earliest times, when significant differences
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only occur near the wall; as time progresses the influence of viscous and/or nonlinear
(i.e. turbulent) effects becomes increasingly important in the outer layer. However,
even at A22 = 0.77, after the mean flow has changed direction near the wall, the mean
velocity of nearly half of the channel is well represented by the conserved-∂u/∂y

approximation. However, conservation of ∂u/∂y (vorticity) in the outer layer does not
imply that the outer-layer turbulence is only affected by inner-layer changes that have
diffused away from the wall; it only implies that the total shear stress remained close
to linear. We shall see below that the applied irrotational APG strain immediately
alters the structure of the outer-layer turbulence.

In the inner scaling (figure 4d) the mean velocity shows an instantaneous departure
from the initial profile, with a rapid increase with time of the wake component (the
excess over the logarithmic law, which the initial profile is very close to, for large y+).
The initially logarithmic regions of the A22t = 0 and A22t > 0 results also differ, as
expected for a non-equilibrium layer (unlike for equilibrium APG boundary layers,
which are often characterized by inner-layer mean velocities that agree with the zero-
pressure-gradient expression in the logarithmic region; see Krogstad & Sk̊are 1995).
In contrast to the APG experiment of Nagano et al. (1997), whose wake-component
increase was accompanied in the logarithmic region by a uniform shift below the zero-
pressure-gradient profile with no change in slope (see also Debisschop & Nieuwstadt
1996), here an initial upward shift is followed by relaxation towards the unstrained
initial condition while the slope in the log region increases instantly and monotonically
with time (figure 4e). Part of this difference, especially at the earliest times, is an
exaggerated response to the impulsive deceleration, compared to the experiments,
which enters this type of figure through the friction velocity. Unlike in the spatial case,
where the influence of sudden convective changes in the mean flow can propagate
upstream through the boundary layer (owing to the interdependence of the free-
stream and boundary-layer flows), here the channel turbulence receives no ‘warning’
of the impending discontinuous temporal change. As a result, the initial changes are
somewhat more abrupt than those imposed upon turbulence in a spatial boundary
layer. In the terminology of Galbraith, Sjolander & Head (1977) (see also Huang &
Bradshaw 1995), the perturbation appears to have produced a general rather than
progressive departure from the law of the wall. (A progressive departure would have
caused y+dU+/dy+ to gradually ‘peel off’ from the right-hand side of the horizontal
line in figure 4e.) Unfortunately, we would need much higher Reynolds numbers to
rule between general and progressive departures.

Other typical APG characteristics exhibited by the flow are the near-wall reduction,
and outer-layer increase, in turbulence intensity, illustrated by the Reynolds shear
stress −u′v′, turbulence kinetic energy k = u′

iu
′
i/2, and vertical velocity variance v′v′

shown in figures 5(a) and (b). A normalization with the instantaneous skin friction
or centreline velocity would magnify the increases and moderate the decreases. The
pressure fluctuations (figure 5c) become more intense over the entire channel. Unlike
the three-dimensional skewing cases discussed in CKS, the present strain rate is too
small to induce an appreciable instantaneous increase in the pressure fluctuations at
A22t = 0 due solely to the impulsive application of the strain (see figures 6c and 17c

of CKS).
Another difference between the present and Nagano et al. flows is in the behaviour

of the velocity fluctuations in the outer layer: here −u′v′, k and v′v′ at a given
yw/δ > 0.5 all increase, while in the experiment the values at fixed yw/δ exhibit very
little if any change (which Nagano et al. view as evidence of the conservation of these
quantities along mean-flow streamlines outside the wall region). In the Spalart &
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sure fluctuations, and (d) eddy viscosity: , A22t = 0; , A22t = 0.19; , A22t =
0.365.

Watmuff (1993) APG the turbulence intensities in the outer layer respond as they do
here, increasing at fixed yw/δ as the flow decelerates (see their figures 12c and 12d).
Whether or not the outer-layer turbulence becomes more energetic apparently depends
on the history (i.e. magnitude Cp and streamwise variation dCp/dx) of the APG. One
aspect of the relationship between the turbulence and mean fields is illustrated in
figure 5(d), which presents profiles of turbulent viscosity νT = −u′v′

/
(∂u/∂y). This

could provide suggestions for simple turbulence models.
The impact of the strain upon the structure of the Reynolds-stress tensor is reflected

in the changes to the ratio of the shear stress to the kinetic energy, a1 = −u′v′/q2 =
−u′v′/2k, shown in figure 6(a). Although the outer-layer reduction is slight (and in fact
non-monotonic), again confirming the robustness of this parameter, the net change
is more significant than that induced by the larger pure-skewing strain (i.e. A13 �= 0
with A11 = A22 = 0) imposed in CKS (A13 was over twice as large as the present
A22, in terms of uτ (0)/δ(0)). This is consistent with one of the primary conclusions of
CKS, that turbulent wall layers are more responsive to variations in the streamwise
pressure gradient than they are to the introduction of mean three-dimensionality via
streamwise variations of the spanwise pressure gradient.

The APG strain also reduces the magnitude of the turbulent transport, compared
to the unstrained initial condition. The ratio of the turbulent flux of k to k
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Figure 6. Profiles of (a) stress/energy ratio −u′v′/q2 and (b) turbulent transport velocity

Vq2 = v′u′
iu

′
i/q

2: , A22t = 0; , A22t = 0.19; , A22t = 0.365.

itself, v′(u′u′ + v′v′ + w′w′)/(u′u′ + v′v′ + w′w′), is plotted in figure 6(b). This quantity
measures the velocity Vq2 with which k is transported by the turbulence either toward
(Vq2 < 0) or away from (Vq2 > 0) the wall. The tendency for Vq2 to diminish in the
outer layer under the influence of an APG has been observed in the infinite-swept-
wing experiment of Bradshaw & Pontikos (1985), and the swept-wing-strain DNS of
CKS. The same tendency holds here: the A11 = −A22 < 0 strain leads to significant
reduction of the upward transport velocity over the near-wall half of the channel,
yw < 0.5δ. At A22t = 0.77, just after the mean-flow reversal, Vq2 has become even
smaller (and at times negative) than the A22t � 0.365 values (the A22t = 0.77 result
is not shown because of uncertainty associated with forming a third-order statistic
from a single instantaneous field). The behaviour of Vq2 , when viewed in light of the
corresponding behaviour of k and νT in figures 5(b) and 5(d), is not inconsistent with
the common assumption that the turbulent flux is proportional to −νT ∂k/∂y (Wilcox
1998). However, as we see in figure 7(c), correctly modelling this term appears to be
of secondary importance, since changes to the other k-transport processes are even
more pronounced.

We conclude with Reynolds-stress budgets in figures 7–9. The left-hand plots, (a),
show the evolution of the stress component for 0 � A22t � 0.77, while those on the
right-hand side, (b) and (c), present the terms responsible for the change. (Incomplete
sample is the source of the oscillations at A22t = 0.77 in figures 7a, 8a and 9a.) The
curves in the upper-right-hand figures (7b, 8b and 9b) profile the budget terms that
are instantly affected by the impulsively applied strain at t = 0; those in the lower
right-hand figures (7c, 8c and 9c) show current conditions and the strain-induced
changes after a finite time, at A22t = 0.365.

For the general strained-channel flow, the non-dimensionalized transport equations
for the Reynolds stresses can be written

∂u′
iu

′
j

∂λ
= Pij + Tij + Dij + Πij − εij , (3.2)

where the material derivative is ∂/∂λ = ∂/∂t + A22y ∂/∂y (see CKS), and



DNS of decelerated wall-bounded turbulent shear flow 13

1.0

yw /δ (0)

(a)

(b)

(c)

0

0.5

0.02

0 1

k
/u

2 τ
(0

)

0

L
os

s
G

ai
n

1.0

yw /δ (t)

0

0.5

0.25

0

L
os

s
G

ai
n

–0.25

0                                                          1

0

0.004

–0.004

yw /δ (0)

1

5

4

3

2

Figure 7. (a) Turbulence kinetic energy k profiles: , A22t = 0; , A22t = 0.365; �,
A22t = 0.77 (single realization). (b),(c) Terms in k budget at (a) A22t = 0+ and (c) A22t = 0.365:

, mean-shear production; , dissipation; , turbulent transport; ,
viscous diffusion; , velocity pressure-gradient correlation; �, applied-strain production (also
shown in inset in (c) with expanded vertical scale); thick-solid curve ( ), sum of all terms
(≈ ∂k/∂t) at A22t = 0.365 (also shown in inset). Thin-solid ( ) curves denote terms at
t = 0 (before strain) and are identified by the shaded regions, which indicate change from
unstrained initial conditions. Curves in (b) and (c) normalized by U 4

ref/ν, where Uref = 1.02uτ (0).

Unstrained initial-field profile subtracted from ∂k/∂t in (b) to remove statistically insignificant
oscillations. (Note difference in vertical scales of (b) and (c).)

right-hand-side terms are the

production: Pij = −u′
iv

′ ∂ uj

∂y
− u′

j v
′ ∂ ui

∂y
− u′

iu
′
�Aj� − u′

ju
′
�Ai�,

dissipation: − εij = − 2

R̂e

∂u′
i

∂x�

∂u′
j

∂x�

,

turbulent transport: Tij = − ∂

∂y
(v′u′

iu
′
j ),
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viscous diffusion: Dij =
1

R̂e

∂2

∂y2
(u′

iu
′
j ),

velocity pressure-gradient term: Πij = −
(

u′
i

∂p′

∂xj

+ u′
j

∂p′

∂xi

)
.

The Reynolds number R̂e is based on a reference velocity Uref and δ(0); R̂e is 400 and

Uref is 1.02uτ (0), such that Reτ = uτ δ/ν = (uτ (t)/Uref) R̂e exp(A22t) is initially = 390.
The velocity u′

i and kinematic pressure p′ fluctuations in (3.2) have been scaled by

Uref, while the spatial variable xi is in units of δ(0). The Reynolds stresses u′
iu

′
j are

functions solely of time t = λ and the wall-normal coordinate yw . It is convenient
to decompose the production term, in order to distinguish between the direct effects
of the irrotational applied strain Aij and those arising indirectly through changes to
the rotational mean u(y, t). We separate the total production rate Pij into rotational
(i.e. shear) and irrotational (applied-strain) components, Pij = P S

ij + P A
ij , respectively,

where

P S

ij = −u′
iv

′ ∂ uj

∂y
− u′

j v
′ ∂ ui

∂y
,

P A
ij = −u′

iu
′
�Aj� − u′

ju
′
�Ai�. (3.3)

The immediate effect of the impulsively applied strain on the development of the
turbulence kinetic energy k is both sudden introduction of the new production term
P A

k = 0.5P A

ii and a step change in the velocity–pressure-gradient term Πk = 0.5Πii

(recall that in incompressible flow both the mean and fluctuation pressure fields are
instantly affected by sudden changes of the mean rate of strain). However, figure 7(b)
reveals that the pressure–velocity correlation change (dotted curve) is not nearly as
important as the new explicit production (open symbols) provided by the APG strain:
the net ∂k/∂t (thick-solid curve in figure 7b) is initially dominated by P A

k ; but by
A22t = 0.365, P A

k is no longer the sole source of ∂k/∂t . Figure 7(c) shows that the
near-wall kinetic-energy decrease (see expanded-scale inset) is accompanied by large
decreases in both mean-shear production P S

k = 0.5P S

ii and dissipation εk = 0.5εii , with
the production falling most rapidly, leading to a negative imbalance. The net positive
∂k/∂t in the other layer, on the other hand, can be traced directly to the A11 = −A22

strain (figure 7c inset).
Compared to its initial impact on k, the strain has a much weaker immediate

influence upon the −u′v′ shear stress, generating only a slight alteration of −Π12

(figure 8b). The long-term effect is more significant. All the terms in the −u′v′ budget
become smaller near the wall, with the mean shear production −P S

12 (a source of
−u′v′) and velocity–pressure-gradient correlation −Π12 (a sink) experiencing the most
obvious changes (figure 8c); a net decrease in −u′v′ occurs since −P S

12 approaches
zero faster than −Π12 does. The near-balance between −P S

12 and −Π12 is also manifest
in the outer layer, where it produces positive −∂u′v′/∂t . All these changes are an
indirect result of the two-dimensional APG strain, since (with A11 = − A22) the
applied-strain production −P A

12 ≡ 0. Note that A11 �= −A22 (and thus −P A

12 �= 0) for
the infinite-swept-wing strains considered by Bradshaw & Pontikos (1985) and CKS,
which implies that the influence of an APG (defined, for the three-dimensional case,
with respect to the upstream two-dimensional flow) in two-dimensional and three-
dimensional boundary layers is not identical: the latter contains an explicit-production
source of −u′v′, the former does not.
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Figure 8. (a) Turbulent shear-stress −u′v′ profiles: , A22t = 0; , A22t = 0.365;
�, A22t = 0.77 (single realization). (b),(c) Terms in −u′v′ budget at (b) A22t = 0+ and
(c) A22t = 0.365: symbols and normalization as in figure 7. Note that −P A

12 ≡ 0 for APG

strain. Unstrained initial-field profile subtracted from −∂u′v′/∂t in (b) to remove statistically
insignificant oscillations.

As with ∂k/∂t , the A22t = 0 ‘pulse’ of ∂v′v′/∂t induced by the APG is primarily
due to the new explicit production, P A

22, although the mitigating effect of the velocity–
pressure-gradient term Π22 is more important here (figure 9b). The initial ∂v′v′/∂t

is negative over the entire channel. From figure 9(c), we see that at A22t = 0.365
the sign of ∂v′v′/∂t has become positive over the bulk of the flow, despite the
continuing negative contribution of the APG strain, through the explicit production
term P A

22 < 0. Near the wall, the sum of the velocity–pressure-gradient Π22, turbulent
transport T22 and dissipation −ε22 terms nearly cancel the negative P A

22; in the outer
layer, the strain has indirectly led to an increase in Π22, which more than offsets the
explicit effect of the strain (i.e. P A

22 < 0). The resulting growth of v′v′ in turn combines
with the nearly constant ∂u/∂y in the outer layer to amplify −u′v′, via the increased
mean-shear production −P S

12 = v′v′∂u/∂y observed in figure 8(c). The budget histories
demonstrate how a relatively weak strain field has played a central role in the outer
layer.
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4. Summary and concluding remarks
DNS of time-developing strained-channel flow with a fairly high initial Reτ = 390

has been performed as an idealization of a turbulent APG boundary layer. This
approach has the advantage of reproducing many of the essential features of the
corresponding spatially developing flow (simultaneous skin-friction reduction and
distortion due to divergence of outer-layer streamlines) in an uncomplicated parallel-
flow geometry. Since statistics vary only in one spatial direction and time, analysis
is (and future model testing will be) considerably simplified. A study of how well
common one-point turbulence models capture the DNS results is underway (Yorke &
Coleman 2004).

The results reveal distinct inner- and outer-layer dynamics. These are quantified
in terms of changes to the first- and second-order statistics, and the terms in the
Reynolds-stress budgets that cause the changes. Near-wall effects associated with
reduced skin friction are observed to diffuse into the outer layer, while the mean
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streamwise compression ∂U/∂x and wall-normal stretching ∂V/∂y strains directly
influence the outer-layer turbulence, causing an increase in turbulence intensity.

The turbulence-modelling challenge for this flow is the manner in which a typical
strain field, weak compared to the mean shear, profoundly influences the turbulence in
the outer layer – before alterations diffuse there from the wall region. The DNS results
are evidence – albeit tentative, given the spatial-to-temporal idealization involved –
that the ∂U/∂x = −∂V/∂y strain introduced by an adverse pressure gradient should
perhaps be viewed as a classical ‘extra strain’ (Bradshaw 1988), affecting the turbulence
more strongly than an order-of-magnitude estimate (e.g. based on |∂U/∂x|/(∂u/∂y))
would imply. This is demonstrated in the Reynolds-stress budgets by how strain-
induced changes to the net ∂τij /∂t are the result of large competing changes to
individual terms. The present results (consistent with those of Spalart & Watmuff
1993) also imply that, while it is apparently valid for some deceleration histories (e.g.
Nagano et al. 1997), the assumption that the turbulence is unaltered as it convects
along outer-layer streamlines until reached by diffusing inner-layer effects should not
automatically be made for all APG boundary layers.

This work was sponsored by the Office of Naval Research (grant no. N00014-94-
1-0016), Dr L. P. Purtell program officer. Computer resources have been supplied by
the SDSC NPACI and DOD MSCR programmes. Professor S. Chernyshenko made
useful comments on an early draft of this paper.
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